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We studied the spin accumulation and spin-transfer torque in a magnetic domain wall by solving the
Boltzmann equation for spin accumulation with the diffusion approximation. We obtained analytical expres-
sions of spin accumulation and spin-transfer torque. Both the adiabatic and the nonadiabatic components of the
spin-transfer torque oscillate with the thickness of the domain wall. We showed that the oscillating component
plays a dominant role in the nonadiabatic torque when the domain wall is thinner than the spin-flip length. We
also showed that the magnitude of the nonadiabatic torque is inversely proportional to the thickness of the
domain wall.
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Spin-dependent electron transport in magnetic nanostruc-
tures results in many interesting phenomena such as the giant
magnetoresistance effect1 and current-induced magnetization
dynamics.2,3 Recently, such spin-dependent phenomena in
magnetic domain walls have been investigated due to great
interest in their potential application to spin-electronics de-
vices such as spin-motive-force memory4,5 and racetrack
memory.6 In these devices, data are stored by moving the
domain wall using spin-transfer torque.

In 2004, Zhang and Li showed that spin-transfer torque in
a domain wall can be decomposed into two parts, the adia-
batic and nonadiabatic torque.7 The adiabatic torque lies
along the spatial gradient of the local magnetization while
the nonadiabatic torque is perpendicular to this direction. As-
suming that the spin accumulation obeys the phenomenologi-
cal diffusion equation and is spatially independent of the
domain wall, Zhang and Li7 showed that the ratio of the
magnitudes of the adiabatic and nonadiabatic torques is de-
termined by the precession frequency of the spin accumula-
tion due to the exchange coupling and the spin-flip scattering
time, and that the nonadiabatic torque is about two orders of
magnitude smaller than the adiabatic torque.

The thickness of a domain wall is determined by the com-
petition of the exchange coupling between the localized
magnetizations and the magnetic anisotropy, and is usually
on the order of 100 nm for conventional ferromagnetic met-
als such as Fe, Co, Ni, and their alloys. However, recent
developments in the processing technology for nanostruc-
tures have allowed the production of a domain wall whose
thickness is on the order of 1–10 nm, by reinforcing the
shape anisotropy of a magnetic nanowire8 or trapping a do-
main wall in a current-confined-path geometry.9 These devel-
opments motivated us to study the transport phenomena in a
thin domain wall.10–12 For such a thin domain wall, we can-
not assume the spatial independence of the spin accumula-
tion. Thus, it is important to estimate spin-transfer torque by
taking into account the spatial variation in the spin accumu-
lation, which would be different from the estimation by
Zhang and Li.7 Recently, Vanhaverbeke and Viret13 calcu-
lated spin-transfer torque in a thin domain wall by numeri-
cally solving the time-dependent Larmor equation of the spin
accumulation in a moving frame and showed that the nona-
diabatic torque is one order of magnitude larger than that

estimated by Zhang and Li7 when the thickness of the do-
main wall is comparable to the Lamor precession length.

In this Brief Report, we study spin accumulation and spin-
transfer torque in a domain wall by solving the Boltzmann
equation with a diffusion approximation. We obtained the
analytical expressions of spin accumulation and spin-transfer
torque. Both the adiabatic and the nonadiabatic components
of the spin-transfer torque oscillate with the thickness of the
domain wall. We show that the oscillation plays a dominant
role in the nonadiabatic torque when the domain-wall thick-
ness is less than the spin-flip length, which is defined by the
product of the Fermi velocity and the spin-flip scattering
time. For a domain wall that is much thinner than the spin-
flip length, the nonadiabatic torque is about one order of
magnitude smaller than the adiabatic torque, which is one
order of magnitude larger than that estimated by Zhang and
Li7 and qualitatively consistent with the results of Vanhaver-
beke and Viret.13 We also showed that the magnitude of the
nonadiabatic torque is inversely proportional to the thickness
of the domain wall.

We considered electron transport in a one-dimensional
magnetic nanowire with a 180° domain wall which lies over
−d /2�x�d /2, where d is the thickness of the domain wall.
We assume that the interaction between the conducting
�s-like� electrons and the localized �d-like� electrons is de-

scribed by an sd exchange interaction, Ĥsd=−�J /2��̂ · Ŝ,
where �̂ is the vector of the Pauli matrices, J is the sd ex-

change coupling constant, and Ŝ�x�= �0,−sin � , cos �� is the
unit vector pointing along the direction of the localized spin
angular momentum. The angle ��x� is given by 0 for
x�−d /2, �� /d��x+d /2� for −d /2�x�d /2, and � for
x�d /2, respectively.

Following Simanek and Rebei,14,15 we employ the rotat-
ing frame where basic unit vectors are defined as

ex=�−1Ŝ� ��Ŝ /�x�, ey =−�−1� Ŝ /�x, and ez= Ŝ, respectively.
We assume that the direction of the localized spin varies
slowly compared to the Fermi wavelength 	F, i.e.,
�=d� /dx
2� /	F; thus, we could neglect the higher-order
terms of � in the following calculation. The spin accumula-
tion and spin-transfer torque in a domain wall are obtained
by solving the Boltzmann equation for the Wigner function

defined as f̂�x , px�= �f�x , px�1̂+g�x , px� · �̂� /2, where f�x , px�
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and g�x , px� represent the charge and spin-distribution func-
tions, respectively. The spin accumulation s and the spin cur-
rent density j are defined as

s =� g
d3p

�2���3 , �1�

j =� vxg
d3p

�2���3 , �2�

respectively. It should be noted that the dimensions of s and
j are density and density times velocity, respectively. The
diffusion approximation, �vx

2gd3p / �2���3��vF
2 /3�s, is ap-

plied to the Boltzmann equation.14 Up to the first order of �,
the transverse components of the spin accumulation, sx and
sy, and spin current, jx and jy, obey the following equations:

�sx

�x
= −

1

2D
jx +

�JT̃

D
jy , �3�

�sy

�x
= −

�JT̃

D
jx −

1

2D
jy , �4�

� jx

�x
− �Jsy +

2


sf
sx = 0, �5�

� jy

�x
+ �Jsx +

2


sf
sy = �jz, �6�

where �J=J /� is the Larmor precession frequency, T̃ is the
momentum relaxation time, 
sf is the spin-flip scattering time

and D=vF
2T̃ /3 is the diffusion constant.14,15 The longitudinal

spin current jz in Eq. �6� is given by jz=�je / �−e�, where �
and je are the spin-polarization factor and the electric current
density, respectively. In our definition, the positive electric
current corresponds to the electron flow along the −x direc-
tion.

The physics behind Eqs. �3�–�6� are as follows. Traveling
through the domain wall, the conducting electrons vary the
direction of their spin along the localized spin angular mo-

mentum Ŝ. Then, spin accumulation and spin current polar-

ized along the y direction ���Ŝ /�x� are induced �see Eq. �6��.
The accumulated spins precess around Ŝ due to the sd ex-
change coupling with the precession frequency �J. Then, the
x components of the spin accumulation and spin current are
induced �see Eq. �5��. Equations �3� and �4� relate the spin
accumulation and spin current by the diffusion constant.

Before estimating the spin accumulation and spin-transfer
torque in a domain wall, we should emphasize the validity of
our calculations. Since Eqs. �3�–�6� are obtained by applying
the diffusion approximation to the Boltzmann equation, they

are valid for d� lmfp, where lmfp=vFT̃ is the mean-free path
of the conducting electrons. For a domain wall the thickness
of which is much smaller than the mean-free path, i.e.,
d
 lmfp, the Boltzmann equation should be solved without
the diffusion approximation. Moreover, in such a very thin
domain wall, we cannot neglect the higher-order terms of �.

We assume that the transverse spin accumulation and spin
current are such that they vanish at the limit of �x�→� and
are continuous at x= �d /2. Then, solving Eqs. �3�–�6�, the
transverse spin accumulations in the domain wall are ob-
tained as sx=Re�s+� and sy =Im�s+�, where

s+ =
��1 + i��jz

�Jd�1 + �2�	1 − exp
−
d

2�
�cosh
 x

�
�� . �7�

Here �=2 / ��J
sf� and � is given by

1

�
=
 1

2D
�1 + 2i�JT̃�
i�J +

2


sf
� , �8�

where kr=Re�1 /�� and ki=Im�1 /�� characterize the oscilla-
tion and damping of sx and sy due to the sd exchange cou-
pling and the spin-dependent scattering, respectively. As
shown in Eq. �7�, the transverse spin accumulations can be
decomposed into spatially independent �first� and dependent
�second� parts.

Figure 1 shows the spatial dependence of the transverse
spin accumulations, sx and sy, for thick �d=100 nm� and thin
�d=10 nm� domain walls, respectively. For convenience, sx
and sy are divided by jz /�J �see Eq. �7��. The parameters are
taken to be J=1.0 eV, 
sf=10−4 ns, and lmfp=3.0 nm, re-
spectively. The Fermi velocity is given by vF=
2�F /m,
where the Fermi energy is taken to be �F=5.0 eV. These are
typical values for the conventional transition ferromagnetic
metals.16 As shown in Figs. 1�a� and 1�b�, for a thick domain
wall, the spin accumulation in the domain wall is nearly
spatially independent except at the boundaries of the domain
wall x= �d /2. On the other hand, as shown in Figs. 1�c� and
1�d�, for a thin domain wall, the spin accumulations vary in
the domain wall and we cannot assume the spatial indepen-
dence of the spin accumulations.

Let us estimate spin-transfer torque in the domain wall,
which is defined as

FIG. 1. The spatial variation in the transverse spin accumula-
tions for a thick �d=100 nm� and thin �d=10 nm� domain wall; �a�
sx for d=100 nm, �b� sy for d=100 nm, �c� sx for d=10 nm, and
�d� sy for d=10 nm, respectively. The magnitudes of sx and sy are
divided by jz /�J �see Eq. �7��.
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� = �
−d/2

d/2

�Js � Ŝdx . �9�

The Landau-Lifshitz-Gilbert equation for the localized mag-

netization M̂=−Ŝ with the torque � is given by

�M̂

�t
= − �M̂ � B + �0M̂ �

�M̂

�t

+
��

2�M

y

�M̂

�x
+

��

2�M

xM̂ �

�M̂

�x
, �10�

where � is the gyromagnetic ratio, B is the effective mag-
netic field, M is the magnitude of the magnetization and �0 is
the Gilbert-damping constant. 
y =ey ·� and 
x=ex ·� corre-
spond to the adiabatic and nonadiabatic torque, respectively.
By using Eq. �7�, we find that


y =
��je

e�1 + �2�
−

��je�kr − e−krd�kr cos kid − ki sin kid��
ed�1 + �2��kr

2 + ki
2�

−
���je�ki − e−krd�ki cos kid + kr sin kid��

ed�1 + �2��kr
2 + ki

2�
, �11�


x = −
���je

e�1 + �2�
−

��je�ki − e−krd�ki cos kid + kr sin kid��
ed�1 + �2��kr

2 + ki
2�

+
���je�kr − e−krd�kr cos kid − ki sin kid��

ed�1 + �2��kr
2 + ki

2�
. �12�

The first terms of Eqs. �11� and �12� are identical to the
adiabatic and nonadiabatic torque estimated by Zhang and
Li,7 respectively. These first terms arise from the spatially
independent part of the spin accumulation, i.e., the first term
of Eq. �7�. It should be noted that these terms are indepen-
dent of the thickness of the domain wall d. For a thick do-
main wall, these first terms are dominant for spin-transfer
torque and the ratio of the magnitude of the adiabatic and
nonadiabatic torque, �
x /
y�, is given by ��10−2.7 On the
other hand, the second and third terms of Eqs. �11� and �12�
arise from the spatial variation in the spin accumulation, i.e.,
the second term of Eq. �7�. As shown in Figs. 1�c� and 1�d�,
for a thin domain wall, we cannot neglect the spatial varia-
tion in the transverse spin accumulation and these second
and third terms dominate the spin-transfer torque. It should
be noted that these terms are inversely proportional to the
thickness d. Thus, for a thin domain wall, the strength of the
spin-transfer torque is considerably different from that esti-
mated by Zhang and Li.7

Figure 2 shows the strength of the adiabatic torque 
y and
the nonadiabatic torque 
x renormalized by ��je /e against
the thickness of the domain wall d. We denote the torque for
d� lmfp by the dotted line because our calculations are re-
stricted for d� lmfp; thus, the torques for d� lmfp are not
valid. As shown in Fig. 2, for d�30 nm, spin-transfer
torque is nearly independent of the thickness d. On the other
hand, for d
30 nm, the strength of the nonadiabatic torque
increases as the thickness d decreases. For d�10 nm,
�
x /
y��10−1, which is 1 order of magnitude larger than that

estimated by Zhang and Li.7 Moreover, for d�10 nm, the
spin-transfer torque oscillates against the thickness d with
the period of the oscillation given by 2� /ki.

Let us reveal the parameters which characterize the above
behavior of the spin-transfer torque. Assuming that
kr�
3 / �4lmfp�
ki�
3�J /vF �Ref. 15� and d� lmfp, we
find that 
y ���je /e and 
x�−���je /e−��je / �edki�, re-
spectively. Thus, for d� lmfp, the adiabatic torque is nearly
independent of the thickness. On the other hand, for
d
1 / ��ki�� lsf / �2
3��40 nm, where lsf=vF
sf is the spin-
flip length, the torque due to the spatial variation in the spin
accumulation is dominant for the nonadiabatic torque. For a
thin domain wall, the ratio of the adiabatic and nonadiabatic
torque is characterized by vF / �
3�Jd�, which is the ratio of
the precession frequency of the electrons’ spin around the
localized spin angular momentum due to the sd exchange
coupling and the angular velocity of the rotation of the ex-
change field in the domain wall. For d=10 nm,
vF / �
3�Jd��10−1. The oscillation period is given by
2� /ki�2�vF / �
3�J��2.5 nm. These estimations can be
confirmed by the plots shown in Fig. 2.

When the precession frequency of the electrons’ spin
around the exchange field, �J, is comparable to the angular
velocity of the rotation of the exchange field in space,
�vF /d, the direction of the electrons’ spin cannot vary their
direction adiabatically, and the nonadiabaticity, which is
sometimes called the mistracking effect, plays an important
role in the spin-dependent transport phenomena. For ex-
ample, the terminal velocity of the domain-wall motion is
proportional to the ratio of the adiabatic and nonadiabatic
torque.17 The nonadiabaticity is characterized by a dimen-
sionless parameter �=�vF / �2d�J�.18 As shown above, the
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FIG. 2. �a� The strength of the adiabatic torque 
y renormalized
by ��je /e against the thickness of the domain wall is shown. �b�
The strength of the nonadiabatic torque 
x renormalized by ��je /e
against the thickness of the domain wall is shown. For
d� lmfp=3 nm, the diffusion approximation cannot be applied to
the Boltzmann equation, and thus, torque below d� lmfp denoted by
the dotted line is not valid.
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ratio of the adiabatic and nonadiabatic torques for a thin
domain wall, vF / �
d�Jd�, is the first order of � while the
magnetoresistance due to the mistracking effect or spin ac-
cumulation is on the second order of �.10,14,15 For conven-
tional ferromagnetic metals with d� lmfp, � is less than unity.
Thus, the nonadiabaticity plays an important role in the
dynamics of the localized magnetization compared to the
magnetoresistance. It should be noted that for a thick
domain wall the nonadiabatic torque is characterized by
�=2 / ��J
sf�, not �, as shown by Zhang and Li.7

We compare our results with those of Vanhaverbeke and
Viret.13 In Ref. 13, a time-dependent phenomenological Lar-
mor equation for the magnetic moment in a moving frame is
solved numerically and showed that the nonadiabatic torque
is shown to be one order of magnitude larger than that esti-
mated by Zhang and Li7 when the thickness of the domain
wall is comparable to the Larmor precession length
	L=vF / �2��J�, which is on the order of a few nanometers.
On the other hand, we consider the spin diffusion in the
domain wall in a steady state by solving the Boltzmann
equation in the rotated frame and analytical expressions of
the spin accumulation and spin-transfer torque are obtained.
We show that the strength of the nonadiabatic torque in-
creases as the thickness of the domain wall decreases for
d� lsf / �2
3�. Note that the condition is determined by the
spin-flip length lsf instead of the Larmor precession length
	L. We also find that the strength of the nonadiabatic torque
is characterized by the first order of the nonadiabatic param-

eter ��1 /d. The nonadiabatic torque does not change its
sign, as shown in Fig. 5 in Ref. 13.

Since the diffusion approximation is applied to the Bolt-
zmann equation, the present theory is not applicable to the
ballistic region d� lmfp. The spin-transfer torque in the bal-
listic region is obtained by Waintal and Vilet.19 One can eas-
ily confirm that our Eq. �7� reduces to Eq. �12� of Ref. 19 in

the limit of T̃ , 
sf→�, where they assume that the local
spin-transfer torque is proportional to the spin accumulation.
One might expect a simple connection formula between bal-
listic and diffusive spin-transfer torquelike Wexler’s formula
for conductance.20 However, this is beyond the scope of the
present Brief Report.

In conclusion, we studied spin-transfer torque in a domain
wall by solving the Boltzmann equation for spin accumula-
tion and found their analytical expressions. For a thin do-
main wall whose thickness is much thinner than the spin-flip
length, the ratio of the magnitude of the adiabatic and nona-
diabatic torque is about 10−1, which is one order of magni-
tude larger than that estimated in Ref. 7 and consistent with
that in Ref. 13. We also found that the strength of the nona-
diabatic torque is inversely proportional to the thickness of
the domain wall.
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